博客
关于我
pointcloud_to_laserscan源码改动,实现激光雷达前部识别
阅读量:591 次
发布时间:2019-03-11

本文共 1024 字,大约阅读时间需要 3 分钟。

激光雷达的0点位置在接口处,源码的范围为[-3.1416-3.1416]逆时针排列。在制定激光雷达参数时,必须确保angular_max大于angular_min,并根据实际环境进行相关调整。

pointcloud_to_laserscan_nodelet.cpp源文件中,以下是关键的代码片段所关注的参数设置:

// 检查点云的高度是否在合理范围内if (*iter_z > max_height_ || *iter_z < min_height_) {    NODELET_DEBUG("rejected for height %f not in range (%f, %f)\n", *iter_z, min_height_, max_height_);    continue;}// 检查点云的投影范围是否在合理范围内double range = hypot(*iter_x, *iter_y);if (range < range_min_ || range > range_max_) {    NODELET_DEBUG("rejected for range %f not in range [%f, %f]\n", range, range_min_, range_max_);    continue;}// 检查角度是否在激光雷达的有效范围内double angle = atan2(*iter_y, *iter_x);if (angle < output.angle_min || angle > output.angle_max) {    NODELET_DEBUG("rejected for angle %f not in range [%f, %f]\n", angle, output.angle_min, output.angle_max);    continue;}

此外,激光雷达的映射范围角度增量设置应与实际部署环境相符。由于angular_max必须大于angular_min,建议在初始化时设置为以下范围:

angle_min_: -M_PI  // 开始角度angle_max_: M_PI   // 结束角度angle_increment_: M_PI / 180.0 // 单个角度点的增量

通过以上设置,可以确保激光雷达的扫描范围在逻辑上是自洽的,避免因角度范围设置错误导致的扫描异常。

转载地址:http://dmntz.baihongyu.com/

你可能感兴趣的文章
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy中的argsort的用法
查看>>
NumPy中的精度:比较数字时的问题
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>
numpy学习笔记3-array切片
查看>>
numpy数组替换其中的值(如1替换为255)
查看>>
numpy数组索引-ChatGPT4o作答
查看>>
numpy最大值和最大值索引
查看>>
NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
查看>>
Numpy矩阵与通用函数
查看>>